Exploring Real Data

1. The General Social Survey (GSS) data:

a. Background:

GSS is conducted by the National Opinion Research Centre (NORC), a Social Science Research Centre at University of Chicago, since 1972.
b. Purpose:

Monitor social change within the U.S. and compare U.S. with other countries. (The Canadian version of the GSS is available through Statistics Canada).
c. Topics:

Sociological and attitudinal surveys regarding education, employment, political opinion, and crime and violence.
d. Data:

Open access from University of Berkley: http://sda.berkeley.edu/
e. Data Analysis:

Survey Documentation and Analysis (SDA) 4.0 (Newest version) Archive: http://sda.berkeley.edu/archive.htm
i. Free web-based data analysis http://sda.berkeley.edu/sdaweb/analysis/?dataset=gss14
ii. Export data into a CSV file and then import the data into a preferred statistical software for data analysis: PSPP (Free Statistical Software)

2. PSPP: https://www.gnu.org/software/pspp/

Download PSPP (e.g., PC or Mac OS): https://www.gnu.org/software/pspp/get.html

Part 1. Exploring the General Social Survey (GSS) data with SDA

In 2014 a survey on attitudes towards science and technology asked participants to indicate their opinion regarding the statement: "Science and technology are making our lives, healthier, easier, and more comfortable" as "strongly agree", "agree", "disagree", or "strongly disagree".

Objective: Univariate Data Analysis

Type of Data: An Ordinal Categorical Data Levels: "strongly agree", "agree", "disagree", or "strongly disagree"

Steps:

1. Visit: http://sda.berkeley.edu/sdaweb/analysis/?dataset=gss14
2. Scroll down the variable tree, and click on the folder:

2014 TOPICAL MODULE: Science, Knowledge About and Attitudes Towards.
3. Select the sub-folder, the item on this survey:

BETTRLFE - SCIENCE MAKES OUR LIVES BETTER
Note: BETTRLFE is the variable name.
4. Click view: Information regarding this variable, BETTRLFE.

5. Quick overview, frequency distribution, of the variable, BETTRLFE.

Selected Study: General Social Survey Cumulative Datafile 1972-2014

6. Making some changes to SDA options and then running the table:

Mode: Append Replace

Type of chart Bar Chart

[^0]Run the Table
Clear Fields
7. After we run the table, for valid cases ($\mathrm{n}=1217$), this is (part of) the SDA output:

Science Makes Our Lives Better					
SDA 4.0: Tables					
General Social Survey Cumulative Datafile 1972-2014					
Aug 20, 2016 (Sat 01:36 PM PDT)					
Variables					
Role	Name	Label	Range	MD	Dataset
Row	BETTRLFE	SCIENCE MAKES OUR LIVES BETTER	1-4	0,8,9	1

Frequency Distribution

Cells contain: -Column percent -N of cases		Distribution
BETTRLFE	1: Strongly agree	$\begin{array}{r} 18.5 \\ 225 \end{array}$
	2: Agree	$\begin{array}{r} 63.4 \\ 772 \end{array}$
	3: Disagree	$\begin{array}{r} 16.5 \\ 201 \end{array}$
	4: Strongly disagree	1.6 19
	COL TOTAL	$\begin{aligned} & 100.0 \\ & 1,217 \end{aligned}$

- We can prompt students with questions such as:
- What was the most response to this GSS statement? Answer: Agree
- We can develop students' numeracy skills:
- Leave the total count (e.g., 1217) and the percentages for each category (e.g., $18.5 \%, 63.4 \%, 16.5 \%, 1.6 \%)$.
- Hide the frequencies (e.g., 225, 772, 201, 19) in the frequency distribution.
- Ask students, "how many participants agreed to this GSS question?"

Take the percentage in the "agree" category and multiply by the total count:
$63.4 \%($ or 0.634$) \times 1217 \cong 772$
8. Treat an ordinal categorical variable as a quantitative variable:

Objective: Obtain summary statistics such as the Mean, Median, Mode, and Standard Deviation.

Science Makes Our Lives Better						
SDA 4.0: Tables						
General Social Survey Cumulative Datafile 1972-2014						
Aug 20, 2016 (Sat 01:36 PM PDT)						
Variables						
Role Nam			Label	Range	MD	Dataset
Row BETT	LFE	SCIENCE MA	KES OUR LIVE	1-4	0,8,9	1
Frequency Distribution						
Cells contain: -Column percent -N of cases			Distribution			
BETTRLFE	1: Stro	ngly agree	$\begin{array}{r} 18.5 \\ 225 \end{array}$			
	2: Agr		63.4 772			
	3: Dis	agree	$\begin{array}{r} 16.5 \\ 201 \end{array}$			
	4: Stro	ngly disagree	1.6 19			
	COL	TOTAL	$\begin{aligned} & 100.0 \\ & 1,217 \end{aligned}$			

- We can prompt students with questions such as:
- What is the mean response to this GSS statement?
- What is the median response to this GSS statement?
- What is the mode response to this GSS statement?
- What is the shape of the distribution to this GSS statement?
- Find the mean in two different ways (some rounding are involved):

1. Mean $=\frac{\text { sum }(\text { level } x \text { frequncy of that level })}{\text { total count }}=\frac{1(225)+2(772)+3(201)+4(19)}{1217}=\frac{2448}{1217}=2.01$
2. $($ Weighted $)$ Mean $=$ sum (level \times proportion for each level $)$

$$
=(0.185 \times 1)+(2 \times 0.634)+(3 \times 0.165)+(4 \times 0.016)=2.03
$$

- Find the median, $50^{\text {th }}$ percentile:

Add percentages until we reach 50%. In this example:
18.5% (less than 50%; so add the next $\%$) $+63.40 \%>50 \%$ (median is here).
Median is 2 (refers to "agree" category).

- Mean is very close to the median (slightly bigger):
$($ Mean $=2.01) \cong($ Median $=2)$
\therefore We have an approximately symmetrical distribution.
- Mode refers to the most frequent category. In this example, it is level 2 (refers to "agree" category).

Mean, Median, and Mode are about the same.
\therefore We have an approximately, bell-shaped symmetrical distribution.
Below is what SDA provides as summary statistics:

Summary Statistics			
Mean $=$	2.01 Std Dev $=.64$ Coef var $=$.32	
Median $=$	2.00 Variance $=.41 \mathrm{Min}=$	1.00	
Mode $=$	2.00 Skewness $=.34 \mathrm{Max}=$	4.00	
Sum $=$	2,448.00 Kurtosis $=.50$ Range $=$	3.00	

9. SDA provides information regarding how the data were collected:

Sample design: stratified cluster sample
Stratum variable $=$ SAMPLERC
Cluster variable $=$ RSAMPCODE

Consider, adding a layer to the data analysis. In this example, we will add the variable sex of respondents into the data analysis.

Objective: Bivariate Data Analysis (Association between Two Categorical Variables) Variables and their Type:

- Opinion About Science Make Life Better:

An Ordinal Categorical Variable
Levels: "strongly agree", "agree", "disagree", or "strongly disagree"

- Sex of respondents:

A Nominal Categorical
Levels: "Male", or "Female"
10. Select "SEX" as the "Row" Variable; And, "BETTRLFE" as the "Column" variable. Follow the screen shots below to makes the changes to SDA and then click on "Run the Table".

11.The contingency table for the distribution of:
"Opinion About Science Makes our Lives Better by Sex of Respondents".

Distibution of Gender by Opinion About Science Make Life Better											
SDA 4.0: Tables General Social Survey Cumulative Datafile 1972-2014											
Aug 21, 2016 (Sun 03:35 PM PDT)											
Variables											
Role		Name		Label					Range	MD	Dataset
Row		SEX		RESPONDENTS SEX					1-2	0	1
Column		BETTRLFE		SCIENCE MAKES OUR LIVES BETTER					1-4	0,8,9	1
Frequency Distribution											
Cells contain: -Row percent -N of cases				BETTRLFE							
				Strongly agree	$\stackrel{2}{2}$	$\begin{gathered} 3 \\ \text { Disagree } \end{gathered}$		$\begin{gathered} \text { ROW } \\ \text { TOTA } \end{gathered}$			
SEX	1: MALE			$\begin{array}{r} 22.1 \\ 120 \end{array}$	$\begin{aligned} & 61.0 \\ & 331 \end{aligned}$	$\begin{array}{r} 15.1 \\ 82 \end{array}$	$\begin{aligned} & 1.8 \\ & 10 \end{aligned}$	$\begin{array}{r} 100 . \\ 54 \end{array}$	$\begin{aligned} & 0.0 \\ & 543 \end{aligned}$		
	2: FEMALE			$\begin{array}{r} 15.6 \\ 105 \end{array}$	$\begin{array}{r} 65.4 \\ 441 \end{array}$	$\begin{array}{r} 17.7 \\ 119 \end{array}$	1.3 9	$\begin{array}{r} 100.0 \\ 672 \end{array}$			
	COL TOTAL			$\begin{array}{r} 18.5 \\ 225 \end{array}$	$\begin{array}{r\|r\|} \mathbf{5} & \mathbf{6 3 . 4} \\ 5 & 772 \end{array}$	$\begin{array}{r} 16.5 \\ 201 \end{array}$	$\begin{array}{r} 1.6 \\ 19 \end{array}$	$\begin{aligned} & 100 . \\ & 1,21 \end{aligned}$			
Color coding:			<-2.0	<-1.0	$<0.0>0.0$	> 0 1.0	. 0 Z				
N in each cell:			Smaller than expected		Larger than expected						

We can develop students' statistical literacy (read and interpret the table):

- Marginal Distributions:
- E.g., percentage of male respondents: 543/1217 x $100=44.61 \%$

- Conditional Distributions:

- Percentage of male participants who agreed: 331/543 x $100=60.96 \%$;
- Percentage of female participants who agreed: $441 / 674 \times 100=65.43 \%$
- Compare the percentages for males and females who agreed: Female participants were more likely to agree than the males.
- Joint Distributions:
- E.g., percentage of the participants who were male and agreed to the GSS statement: $331 / 1217 \times 100=27.20 \%$
12.The nested bar chart for the distribution of:
"Opinion About Science Makes our Lives Better by Sex of Respondents".

We can ask students to describe any obvious pattern they see in the graph.
Graph interpretation:
Both male and female participants mostly agreed to the GSS statement, "Science and technology make our lives better". More of the female respondents agreed to the GSS statement than the males.

Export Data into a CSV file

1. In SDA, from the tool bar menu, go to "Download Custom Subset".
2. In the "File Options" tab, select "CSV file from the "Type of data file to create".

3. In "Select Variables" tab, under "Specify individual variables names", type in the box the names of the two variables: SEX, BETTRLFE.

4. In "Create Files" tab, click on the icon "Create Files".
5. Next, click on the icon "Data files' and save the data in your "My Document" folder.
6. Click on the icon "Codebook". Note the numeric references for the levels of the variables in the data file:

SEX: " 1 = Male", " 2 = Female"
BETTRLFE: " 1 = Strongly Agree", " 2 = Agree", " 3 = Disagree", " 4 = Strongly Disagree"
The above levels for each variable are the only levels we want to include into our data analysis. We will omit the missing values coded as, e.g., 8,9 , from our data analysis (later on in PSPP).

Part 2. Import Data in PSPP

Open PSPP.

1. Select Files to Import:

- In menu bar, go to File > Import Data > My Document
- Select the saved data file
- Click Next (Bottom of the page)

2. Select the Lines to Import:

- Click Next

3. Select the First Line:

- Select Line " 1 "
- Check off the box: Line Above Selected Line Contains Variable Names
- Click Next

4. Choose Separators:

- Click Next

5. Adjust Variable Formats:

- Click Apply.
* Go to Variable View (Bottom of the page).
- For variable SEX, make value labels:
- Value: 1, Value Label: Male; Click on Add
- Value: 2, Value Label: Female; Click on Add
- Click Ok.
- For variable BETTRLFE, make value labels:
- Value: 1, Value Label: Strongly Agree; Click on Add
- Value: 2, Value Label: Agree; Click on Add
- Value: 3, Value Label: Disagree; Click on Add
- Value: 4, Value Label: Strongly Disagree; Click on Add
- Click Ok.
* In menu bar, go to File > New > Syntax
- Copy the syntax below and paste into the syntax editor:

SELECT IF (SEX = 1 OR SEX = 2).
EXECUTE.
SELECT IF $($ BETTRLFE $=1$ OR BETTRLFE $=2$ OR BETTRLFE $=3 \mathrm{OR}$ BETTRLFE = 4).
EXECUTE.

- In the syntax menu bar, click on RUN > ALL.
* In menu bar, go to Bar Chart.
- In the Bar Chart box that appears:
- Variable: BETTRLFE
- Variable Axis: SEX
- Variable Cluster: BETTRLFE
- Click OK.
* PSPP output:

SEX

* In menu bar, go to Analyze > Descriptive Statistics > Crosstabs

- In the Crosstabs box that appears:
- Rows: Select variable "SEX"
- Columns: Select variable "BETTRLFE"
- Click OK.

PSPP output:

- CROSSTABS

```
CROSSTABS
CROSSTABS
    /TABLES= SEX BY BETTRLFE
    /FORMAT=AVALUE TABLES PIVOT
    /STATISTICS=CHISQ
    /CELLS=COUNT ROW COLUMN TOTAL.
```

Summary.

	Cases					
	Valid		Missing		Total	
	Nercent	Percent	N	Percent		
SEX*BETTRLFE	1217	100.0%	0	0.0%	1217	100.0%

SEX* BETTRLFE [count, row \%, column \%, total \%].

	BETTRLFE				
SEX	Strongly Agree	Agree	Disagree	Strongly Disagree	Total
Male	120.00	331.00	82.00	10.00	543.00
	22.10%	60.96%	15.10%	1.84%	100.00%
	53.33%	42.88%	40.80%	52.63%	44.62%
	9.86%	27.20%	6.74%	$.82 \%$	44.62%
Female	105.00	441.00	119.00	9.00	674.00
	15.58%	65.43%	17.66%	1.34%	100.00%
	46.67%	57.12%	59.20%	47.37%	55.38%
	8.63%	36.24%	9.78%	$.74 \%$	55.38%
Total	225.00	772.00	201.00	19.00	1217.00
	18.49%	63.43%	16.52%	1.56%	100.00%
	100.00%	100.00%	100.00%	100.00%	100.00%
	18.49%	63.43%	16.52%	1.56%	100.00%

Chi-square tests.

Statistic	Value	df	Asymp. Sig. (2-tailed)
Pearson Chi-Square	9.55	3	.023
Likelihood Ratio	9.50	3	.023
Linear-by-Linear Association	4.74	1	.030
N of Valid Cases	1217		

* Options to save (Export) PSPP outputs:
- In the output window, go to File > Export > "Give a name to your output"
- At the bottom of the box that appears, from the drop down menu, select the format that you want to save your PSPP output: e.g., HTML(*.html)
- Click "Save"

Here is the PSPP output in html format:

SEX * BETTRLFE [count, row \%, column \%, total \%].

	BETTRLFE				
SEX	Strongly Agree	Agree	Disagree	Strongly Disagree	Total
Male	120.00	331.00	82.00	10.00	543.00
	22.10%	60.96%	15.10%	1.84%	100.00%
	53.33%	42.88%	40.80%	52.63%	44.62%
	9.86%	27.20%	6.74%	$.82 \%$	44.62%
Female	105.00	441.00	119.00	9.00	674.00
	15.58%	65.43%	17.66%	1.34%	100.00%
	46.67%	57.12%	59.20%	47.37%	55.38%
	8.63%	36.24%	9.78%	$.74 \%$	55.38%
Total	225.00	772.00	201.00	19.00	1217.00
	18.49%	63.43%	16.52%	1.56%	100.00%
	100.00%	100.00%	100.00%	100.00%	100.00%
	18.49%	63.43%	16.52%	1.56%	100.00%

PSPP Codes:

ELECT IF $($ SEX = 1 OR SEX = 2).
EXECUTE.
SELECT IF $($ BETTRLFE $=1$ OR BETTRLFE $=2$ OR BETTRLFE $=3$ OR BETTRLFE = 4).
EXECUTE.
GRAPH /BAR = COUNT BY SEX BY BETTRLFE.

CROSSTABS

/TABLES= SEX BY BETTRLFE
/FORMAT=AVALUE TABLES PIVOT
/STATISTICS=CHISQ
/CELLS=COUNT ROW COLUMN TOTAL.

~ The End ~

Thanks for your participation ;)

Asal Aslemand

[^0]: - Decimal Options

